
embOS
Real-Time Operating System

CPU & Compiler specifics for
Cortex-M using Embedded Studio

Document: UM01061
Software Version: 5.14.0.0

Revision: 0
Date: May 5, 2021

   

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com


2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed to
be entirely free of error. The information in this manual is subject to change for functional or
performance improvements without notice. Please make sure your manual is the latest edition.
While the information herein is assumed to be accurate, SEGGER Microcontroller GmbH (SEG-
GER) assumes no responsibility for any errors or omissions. SEGGER makes and you receive no
warranties or conditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2021 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH

https://www.segger.com


3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: May 5, 2021

Software Revision Date By Description

5.14.0.0 0 210505 TS New software version.

5.12.0.1 0 201208 TS New software version.

5.12.0.0 0 201124 TS/MM
New software version.
Chapter “ARMv8-M Stack limit register PSPLIM” added.
Chapter “Libraries” updated with libraries for Cortex-M33.

5.10.1.0 0 200617 MC New software version.

5.8.2.0 0 200107 TS New software version.

5.8.1.0 0 191126 MC New software version.

5.06 1 190709 MM Minor modifications.
Chapter “Libraries” updated with libraries for Cortex-M23.

5.06 0 190220 TS New software version.

5.02a 0 180725 TS New software version.

5.00 1 180518 TS Chapter “CPU and compiler specifics” updated.

5.00 0 180503 MM Chapter “embOS Thread Script” updated.

4.40 0 180111 TS/MC Chapter “Thread-Local Storage TLS” added.

4.38 0 170921 TS New software version.

4.36 0 170731 MC New software version.

4.34 0 170411 MC New software version.

4.32 0 170109 MM/MC Chapter “embOS Thread script” updated.

4.24 0 160706 MC Chapter “VFP support” updated.

4.16 0 160404 RH Added new chapter: embOS Thread Script

4.14 0 151211 MC New software version.

4.12b 0 151005 MC New software version.

4.12 0 150821 SC New software version.

4.10b 0 150609 SC Initial version.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



4

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



6

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



7

Table of contents

1 Using embOS ................................................................................................................9

1.1 Installation .................................................................................................. 10
1.2 First Steps .................................................................................................. 11
1.3 The example application OS_StartLEDBlink.c ................................................... 12
1.4 Stepping through the sample application .........................................................13

2 Build your own application ..........................................................................................16

2.1 Introduction .................................................................................................17
2.2 Required files for an embOS ..........................................................................17
2.3 Change library mode .................................................................................... 17
2.4 Select another CPU ...................................................................................... 17

3 Libraries .......................................................................................................................18

3.1 Naming conventions for prebuilt libraries ........................................................ 19

4 CPU and compiler specifics ........................................................................................20

4.1 Standard system libraries ..............................................................................21
4.2 Thread-Local Storage TLS ............................................................................. 21

4.2.1 OS_TASK_SetContextExtensionTLS() ................................................... 21
4.3 ARMv8-M Stack limit register PSPLIM ............................................................. 23
4.4 ARM erratum 837070 ................................................................................... 24

5 Stacks ......................................................................................................................... 25

5.1 Task stack for Cortex-M ................................................................................ 26
5.2 System stack for Cortex-M ............................................................................26
5.3 Interrupt stack for Cortex-M ..........................................................................26

6 Interrupts ..................................................................................................................... 27

6.1 Cortex-M interrupts ...................................................................................... 28
6.2 What happens when an interrupt occurs? ........................................................28
6.3 Defining interrupt handlers in C .....................................................................28
6.4 Interrupt vector table ................................................................................... 28
6.5 Interrupt-stack switching .............................................................................. 29
6.6 Zero latency interrupts ................................................................................. 29
6.7 Interrupt priorities ........................................................................................29
6.8 Interrupt nesting ..........................................................................................31
6.9 Interrupt handling API .................................................................................. 32

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



8

7 CMSIS .........................................................................................................................37

7.1 Introduction .................................................................................................38
7.2 The generic CMSIS start project .................................................................... 39
7.3 Device specific files needed for embOS with CMSIS .......................................... 39
7.4 Device specific functions/variables needed for embOS with CMSIS ...................... 39
7.5 CMSIS generic functions needed for embOS with CMSIS ................................... 40
7.6 Customizing the embOS CMSIS generic start project ........................................ 40
7.7 Adding CMSIS to other embOS start projects .................................................. 40
7.8 Interrupt and exception handling with CMSIS .................................................. 42

7.8.1 Enable and disable interrupts ............................................................. 42
7.8.2 Setting the Interrupt priority .............................................................. 42

8 VFP support ................................................................................................................43

8.1 Vector Floating Point support .........................................................................44

9 RTT and SystemView .................................................................................................45

9.1 SEGGER Real Time Transfer .......................................................................... 46
9.2 SEGGER SystemView ....................................................................................47

10 embOS Thread Script ...............................................................................................48

10.1 Introduction ...............................................................................................49
10.2 How to use it ............................................................................................ 49

11 Technical data ...........................................................................................................55

11.1 Memory requirements ................................................................................. 56

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



Chapter 1
 
Using embOS

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



10 CHAPTER 1 Installation

1.1    Installation
This chapter describes how to start with embOS. You should follow these steps to become
familiar with embOS.

embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find many prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 11.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embOS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



11 CHAPTER 1 First Steps

1.2    First Steps
After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder Start. It is a good idea to use one of them as a starting point for
all of your applications. The subfolder BoardSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from BoardSupport subfolder.

To get your new application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work.
• Copy the whole folder Start which is part of your embOS distribution into your work

directory.
• Clear the read-only attribute of all files in the new Start folder.
• Open one sample workspace/project in

Start\BoardSupport\<DeviceManufacturer>\<CPU> with your IDE (for example, by
double clicking it).

• Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



12 CHAPTER 1 The example application OS_StartLEDBlink.c

1.3    The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/*********************************************************************
*                     SEGGER Microcontroller GmbH                    *
*                        The Embedded Experts                        *
**********************************************************************

-------------------------- END-OF-HEADER -----------------------------
File    : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
          a LED of the target hardware (as configured in BSP.c).
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128];  // Task stacks
static OS_TASK         TCBHP, TCBLP;                // Task control blocks

static void HPTask(void) {
  while (1) {
    BSP_ToggleLED(0);
    OS_TASK_Delay(50);
  }
}

static void LPTask(void) {
  while (1) {
    BSP_ToggleLED(1);
    OS_TASK_Delay(200);
  }
}

/*********************************************************************
*
*       main()
*/
int main(void) {
  OS_Init();    // Initialize embOS
  OS_InitHW();  // Initialize required hardware
  BSP_Init();   // Initialize LED ports
  OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
  OS_TASK_CREATE(&TCBLP, "LP Task",  50, LPTask, StackLP);
  OS_Start();   // Start embOS
  return 0;
}

/*************************** End of file ****************************/

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



13 CHAPTER 1 Stepping through the sample application

1.4    Stepping through the sample application
When starting the debugger, you will see the main() function (see example screenshot
below). The main() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program.

OS_Init() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return.

Before you step into OS_Start(), you should set two breakpoints in the two tasks as shown
below.

As OS_Start() is part of the embOS library, you can step through it in disassembly mode
only.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



14 CHAPTER 1 Stepping through the sample application

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until you
reach the highest priority task.

If you continue stepping, you will arrive at the task that has lower priority:

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



15 CHAPTER 1 Stepping through the sample application

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit.c. You may also set a breakpoint there before step-
ping over the delay in LPTask().

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the Watch
window, HPTask() continues operation after expiration of the 50 system tick delay.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



Chapter 2
 
Build your own application

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



17 CHAPTER 2 Introduction

2.1    Introduction
This chapter provides all information to set up your own embOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 11 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

2.2    Required files for an embOS
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from the directory .\Start\Inc. This header file declares all embOS API

functions and data types and has to be included in any source file using embOS
functions.

• RTOSInit*.c from one target specific .\Start\BoardSupport\<Manufacturer>\<MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

• OS_Error.c from one target specific subfolder .\Start\BoardSupport
\<Manufacturer>\<MCU>. The error handler is used only if a debug library is used in
your project.

• One embOS library from the subfolder .\Start\Lib.
• Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embOS internal variables. Your main() function has to initialize embOS by
calling OS_Init() and OS_InitHW() prior to any other embOS functions that are called.

2.3    Change library mode
For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:
• If your selected library is already available in your project, just select the appropriate

project configuration.
• To add a library, you may add the library to the existing Lib group. Exclude all other

libraries from your build, delete unused libraries or remove them from the configuration.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/or

modify the OS_Config.h file accordingly.

2.4    Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\Start\BoardSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_InitH-
W(), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



Chapter 3
 
Libraries

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



19 CHAPTER 3 Naming conventions for prebuilt libraries

3.1    Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows:

libos_v<Architecture>_t<VFP_support><Endianness>_<Libmode><Errata>.a

Parameter Meaning Values

Architecture Specifies the ARM architecture

6m : Cortex-M0/M0+/M1
7m : Cortex-M3/M4/M7
8mbl : Cortex-M23
8mml : Cortex-M33

VFP_support Floating point support

_ : No hardware VFP support
_vfpv4_ : VFP with softfp

 floating-point ABI
_vfpv4h_ : VFP with hard

 floating-point ABI

Endianness Byte order
be : Big endian
le : Little endian

LibMode Specifies the library mode

xr : Extreme Release
r : Release
s : Stack check
sp : Stack check + profiling
d : Debug
dp : Debug + profiling +

 Stack check
dt : Debug + profiling +

 Stack check + trace

Errata
Specifies whether a
workaround for ARM errata
was applied.

_837070 : Erratum 837070 applied.
: No workaround applied.

Example

libos_v7m_t_le_dp.a is the library for a project using Cortex-M3 core, thumb mode, little
endian mode with debug and profiling support.

Note

With earlier versions of embOS for Cortex-M the workaround for ARM erratum 837070
was applied by default for ARMv7-M devices. If libraries including the workaround are
desired, a suitable set of libraries is provided, but projects would need to be updated
accordingly. Please have a look in the chapter ARM erratum 837070 for more details.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



Chapter 4
 
CPU and compiler specifics

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



21 CHAPTER 4 Standard system libraries

4.1    Standard system libraries
embOS for Cortex-M and Embedded Studio may be used with standard libraries.

embOS delivers the file OS_ThreadSafe.c which includes hook functions to make e.g. the
heap management functions thread safe.

4.2    Thread-Local Storage TLS
The Embedded Studio standard library supports usage of thread-local storage. Several
library objects and functions need local variables which have to be unique to a thread.
Thread-local storage will be required when these functions are called from multiple threads.
embOS for Embedded Studio is prepared to support the tread-local storage, but does not
use it per default. This has the advantage of no additional overhead as long as thread-
local storage is not needed by the application. The embOS implementation of thread-local
storage allows activation of TLS separately for every task. Only tasks that call functions
using TLS need to activate the TLS by calling an initialization function when the task is
started.

Library objects that need thread-local storage when used in multiple tasks are e.g.:
• error functions - errno, strerror.
• locale functions - localeconv, setlocale.
• time functions - asctime, localtime, gmtime, mktime.
• multibyte functions - mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,

wctomb.
• rand functions - rand, srand.
• etc functions - atexit, strtok.
• C++ exception engine.

4.2.1    OS_TASK_SetContextExtensionTLS()

Description

OS_TASK_SetContextExtensionTLS() may be called from a task to initialize and use
thread-local storage.

Prototype

void OS_TASK_SetContextExtensionTLS(void);

Additional information

OS_TASK_SetContextExtensionTLS() shall be the first function called from a task when
TLS should be used in the specific task. The function must not be called multiple times from
one task. The thread-local storage is allocated on the heap. To ensure thread-safe heap
management when using TLS, make sure to include the OS_ThreadSafe.c.

Example

The following printout demonstrates the usage of task specific TLS in an application.

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128];  // Task stacks
static OS_TASK         TCBHP, TCBLP;                // Task control blocks

static void HPTask(void) {
  OS_TASK_SetContextExtensionTLS();
  while (1) {
    errno = 42;  // errno specific to HPTask
    OS_TASK_Delay(50);
  }

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



22 CHAPTER 4 Thread-Local Storage TLS

}

static void LPTask(void) {
  OS_TASK_SetContextExtensionTLS();
  while (1) {
    errno = 1;  // errno specific to LPTask
    OS_TASK_Delay(200);
  }
}

int main(void) {
  errno = 0;      // errno not specific to any task
  OS_Init();      // Initialize embOS
  OS_InitHW();    // Initialize required hardware
  OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
  OS_TASK_CREATE(&TCBLP, "LP Task",  50, LPTask, StackLP);
  OS_Start();     // Start embOS
  return 0;
}

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



23 CHAPTER 4 ARMv8-M Stack limit register PSPLIM

4.3    ARMv8-M Stack limit register PSPLIM
When the ARMv8-M Security Extension is included, there are two PSPLIM registers in the
processor:
• PSPLIM_NS for the Non-secure state.
• PSPLIM_S for the Secure state.

The hardware continuously compares the process stack register (PSP) against this process
stack limit register (PSPLIM). If the PSP is lower than the PSPLIM a stack overflow occurred
and a fault exception is generated.

embOS Cortex-M runs in secure state and comes with a task context extension for the PS-
PLIM_S register. Each task context can be extended by the call of OS_PSPLIM_SetTaskCon-
textExtension(). The task context extension saves and restores the PSPLIM register on
the according task stack. When a task gets deactivated the PSPLIM register is set to zero
which deactivates the PSPLIM stack check for other tasks which do not use this extension.

4.3.1    OS_PSPLIM_SetTaskContextExtension()

Description

Extends the task context with the stack check limit register PSPLIM.

Prototype

void OS_PSPLIM_SetTaskContextExtension(const void* pStack);

Additional information

OS_PSPLIM_SetTaskContextExtension() initially sets the PSPLIM register to the parame-
ter pStack. This is not done when the task context is extended with OS_TASK_AddCon-
textExtension() or OS_TASK_SetContextExtension(). In that case the PSPLIM register
should be set manually.

After using this function, any further task context extensions cannot be added by calling
OS_TASK_SetContextExtension(), but can be added using OS_TASK_AddContextExten-
sion() instead.

If a task has already another task context extension set, the PSPLIM task context exten-
sion can be added by passing the predefined OS_PSPLIM_ContextExtension structure to
OS_TASK_AddContextExtension().

Example

static OS_STACKPTR int StackHP[128];
static OS_TASK         TCBHP;

static void HPTask(void) {
  OS_PSPLIM_SetTaskContextExtension(StackHP);
  while (1) {
    BSP_ToggleLED(0);
    OS_TASK_Delay(50);
  }
}

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



24 CHAPTER 4 ARM erratum 837070

4.4    ARM erratum 837070
With earlier versions of embOS for Cortex-M the workaround for ARM erratum 837070 was
applied by default for ARMv7-M devices. If libraries including the workaround are desired,
a suitable set of libraries is provided, but projects would need to be updated according-
ly. Please add the define USE_ERRATUM_837070 set to 1 to your preprocessor settings or
OS_Config.h.

If you are working with the embOS source code instead of the library please add the define
USE_ERRATUM_837070 set to 1 to the C and assembler preprocessor settings.

This workaround sets PRIMASK before writing to BASEPRI and unconditionally clears it af-
terwards. If the previous value of PRIMASK shall be retained after modification of BASEPRI,
the OS_PRESERVE_PRIMASK definition may be set to 1 in the C and assembler preprocessor
settings.

Devices with the ARM core r0p0 or r0p1 are affected only. When an embOS library without
this workaround is used with a device which is affected by this erratum, a debug build of
embOS calls OS_Error() with the error code OS_ERR_HW_NOT_AVAILABLE.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



Chapter 5
 
Stacks

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



26 CHAPTER 5 Task stack for Cortex-M

5.1    Task stack for Cortex-M
Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

For Cortex-M CPUs, this minimum basic task stack size is about 88 bytes. Because any
function call uses some amount of stack and every exception also pushes at least 32 bytes
onto the current stack, the task stack size has to be large enough to handle one exception
too. For privileged tasks, we recommend at least 512 bytes stack as a start. Unprivileged
tasks will require an additional 128 bytes of task stack.

Note

Stacks for Cortex-M devices need to be 8-byte aligned. embOS ensures that task
stacks are properly aligned. However, since this can result in unused bytes, the ap-
plication should ensure that task stacks are properly aligned. This can be achieved by
defining an array using a 64-bit data type like OS_U64.

5.2    System stack for Cortex-M
The embOS system executes in thread mode, the scheduler executes in handler mode.
The minimum system stack size required by embOS is about 160 bytes (stack check &
profiling build). However, since the system stack is also used by the application before the
start of multitasking (the call to OS_Start()), and because software timers and C-level
interrupt handlers also use the system stack, the actual stack requirements depend on the
application.

The size of the system stack can be changed by modifying the project settings. We recom-
mend a minimum stack size of 256 bytes for the system stack.

5.3    Interrupt stack for Cortex-M
If a normal hardware exception occurs, the Cortex-M core switches to handler mode which
uses the main stack pointer. With embOS, the main stack pointer is initialized to use the
CSTACK which is defined in the linker command file. The main stack is also used as stack by
the embOS scheduler and during idle times, when no task is ready to run and OS_Idle()
is executed.

Note

When using an embOS Safe build, please note that the stack-check-limit is config-
urable through OS_STACK_SetCheckLimit() and by default is configured at 70 percent
of the total stack size. This will impact the minimum size requirement for both task
stacks and the CSTACK.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



Chapter 6
 
Interrupts

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



28 CHAPTER 6 Cortex-M interrupts

6.1    Cortex-M interrupts
The Cortex-M core comes with a built-in vectored interrupt controller which supports up
to 240 external interrupt sources. The real number of interrupt sources depends on the
specific target CPU.

6.2    What happens when an interrupt occurs?
• The CPU-core receives an interrupt request from the interrupt controller.
• As soon as the interrupts are enabled, the interrupt is accepted and executed.
• The CPU pushes temporary registers and the return address onto the current stack.
• The CPU switches to handler mode and main stack.
• The CPU saves an exception return code and current flags onto the main stack.
• The CPU jumps to the vector address delivered by the NVIC.
• The interrupt handler is processed.
• The interrupt handler ends with a return from interrupt by reading the exception return

code.
• The CPU switches back to the mode and stack which was active before the exception

was called.
• The CPU restores the temporary registers and return address from the stack and

continues the interrupted function.

6.3    Defining interrupt handlers in C
Interrupt handlers for Cortex-M cores are written as normal C-functions which do not take
parameters and do not return any value. Interrupt handlers which call an embOS function
need a prologue and an epilogue function as described in the generic manual and in the
examples below.

Example

Simple interrupt routine:

static void _Systick(void) {
  OS_INT_EnterNestable();  // Inform embOS that interrupt code is running
  OS_TICK_Handle();        // May be interrupted
  OS_INT_LeaveNestable();  // Inform embOS that interrupt handler is left
}

Note

If you do not set an interrupt priority with NVIC_SetPriority() or OS_ARM_ISRSet-
Prio() the priority after reset is 0x00 which is an invalid embOS interrupt priority.

6.4    Interrupt vector table
After reset, ARM Cortex-M CPUs use an initial interrupt vector table located in ROM at
address 0x00. It contains the initial stack pointer as well as the addresses of all exception
handlers, which are defined in a C source or assembly file in the CPU specific subdirectory.
All interrupt handler function addresses have to be present in that file at compile time as
long as the table is kept in ROM.

If the vector table is copied to RAM, however, interrupt handlers can be installed dynamically
at runtime. To do so, the vector table base register inside the NVIC controller has to be
initialized to point to the vector table base address in RAM.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



29 CHAPTER 6 Interrupt-stack switching

6.4.1    Required embOS system interrupt handler
embOS for Cortex-M core needs two exception handlers which belong to the system itself,
PendSV_Handler() and SysTick_Handler(). Both are delivered with embOS. When using
your own interrupt vector table, ensure that they are referenced in the vector table.

Note

Some older BSPs used to name the PendSV ISR OS_Exception() and thus need to
rename it to PendSV_Handler().

6.5    Interrupt-stack switching
Since Cortex-M core based controllers have two separate stack pointers and embOS utilizes
the process stack pointer to execute tasks, there is no need to explicitly switch stacks inside
interrupt routines, which utilize the main stack pointer. The routines OS_INT_EnterIntS-
tack() and OS_INT_LeaveIntStack() are supplied for source code compatibility to other
processors only and have no functionality.

6.6    Zero latency interrupts
Instead of disabling interrupts when embOS does atomic operations, the interrupt level
of the CPU is set to 128. Therefore, all interrupt priorities higher than 128 can still be
processed (please note that lower priority numbers define a higher priority). Interrupts with
priority level from 0 to 127 are never disabled. These interrupts are named zero latency
interrupts. You must not execute any embOS function from within a zero latency interrupt.

Note

Please be aware with ARM Erratum 837070 embOS sets the PRIMASK before writing to
BASEPRI and unconditionally clears it afterwards. Therefore, zero lateny interrupts are
disabled for a few cycles when embOS disables or enables embOS interrupts. Please
have a look in the chapter ARM erratum 837070 for more details.

6.7    Interrupt priorities
This chapter describes interrupt priorities supported by the Cortex-M core. The priority is
any number between 0 and 255 as seen by the CPU core. With embOS and its own setup
functions for the interrupt controller and priorities, there is no difference in the priority
values regardless of the different preemption level of specific devices. Using the CMSIS
functions to set up interrupt priorities requires different values for the priorities. These
values depend on the number of preemption levels of the specific chip. A description is
found in the chapter CMSIS.

6.7.1    Interrupt priorities with Cortex-M cores
The Cortex-M supports up to 256 levels of programmable priority with a maximum of 128
levels of preemption. Most Cortex-M chips have fewer supported levels, for example 8, 16,
32, and so on. The chip designer can customize the chip to obtain the levels required. There
is a minimum of 8 preemption levels. Every interrupt with a higher preemption level may
preempt any other interrupt handler running on a lower preemption level. Interrupts with
equal preemption level may not preempt each other.

With introduction of zero latency interrupts, interrupt priorities usable for interrupts using
embOS API functions are limited.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



30 CHAPTER 6 Interrupt priorities

• Any interrupt handler using embOS API functions has to run with interrupt
priorities from 128 to 255. These embOS interrupt handlers have to start with
OS_INT_Enter() or OS_INT_EnterNestable() and have to end with OS_INT_Leave()
or OS_INT_LeaveNestable().

• Any zero latency interrupt (running at priorities from 0 to 127) must not call any embOS
API function. Even OS_INT_Enter() and OS_INT_Leave() must not be called.

• Interrupt handlers running at low priorities (from 128 to 255) not calling any embOS
API function are allowed, but must not re-enable interrupts! The priority limit between
embOS interrupts and zero latency interrupts is fixed to 128 and can only be changed
by recompiling embOS libraries! This is done for efficiency reasons. Basically the define
OS_IPL_DI_DEFAULT in RTOS.h and the RTOS.s file must be modified. There might be
other modifications necessary. Please contact the embOS support if you like to change
this threshold.

6.7.2    Priority of the embOS scheduler
The embOS scheduler runs in the PendSV handler and on the lowest interrupt priority. The
scheduler may be preempted by any other interrupt with higher preemption priority level.
The application interrupts shall run on higher preemption levels to ensure short reaction
time.

During initialization, the priority of the embOS scheduler is set to 0x03 for ARMv6-M and
to 0xFF for ARMv7-M, which is the lowest preemption priority regardless of the number of
preemption levels.

6.7.3    Priority of the embOS system timer
The embOS system timer runs on the second lowest preemption level. Thus, the embOS
timer may preempt the scheduler. Application interrupts which require fast reaction should
run on a higher preemption priority level.

6.7.4    Priority of embOS software timers
The embOS software timer callback functions are called from the scheduler and run on the
schedulers preemption priority level which is the lowest interrupt priority level. To ensure
short reaction time of other interrupts, other interrupts should run on a higher preemption
priority level and the software timer callback functions should be as short as possible.

6.7.5    Priority of application interrupts for Cortex-M cores
Application interrupts using embOS functions may run on any priority level between 255
to 128. However, interrupts which require fast reaction should run on higher priority levels
than the embOS scheduler and the embOS system timer to allow preemption of theses
interrupt handlers. Interrupt handlers which require fast reaction may run on higher prior-
ities than 128, but must not call any embOS function (zero latency interrupts). We recom-
mend that application interrupts should run on a higher preemption level than the embOS
scheduler, at least at the second lowest preemption priority level.

As the number of preemption levels is chip specific, the second lowest preemption priority
varies depending on the chip. If the number of preemption levels is not documented, the
second lowest preemption priority can be set as follows, using embOS functions:

unsigned char Priority;
OS_ARM_ISRSetPrio(OS_ISR_ID_TICK, 0xFF);            
  // Set to lowest level, ALL BITS set
Priority  = OS_ARM_ISRSetPrio(OS_ISR_ID_TICK, 0xFF);  // Read priority back
Priority -= 1;                                        // Lower preemption level
OS_ARM_ISRSetPrio(OS_ISR_ID_TICK, Priority);

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



31 CHAPTER 6 Interrupt nesting

6.8    Interrupt nesting
The Cortex-M CPU uses a priority controlled interrupt scheduling which allows nesting of
interrupts per default. Any interrupt or exception with a higher preemption priority may
interrupt an interrupt handler running on a lower preemption priority. An interrupt handler
calling embOS functions has to start with an embOS prologue function; it informs embOS
that an interrupt handler is running. For any interrupt handler, the user may decide indi-
vidually whether this interrupt handler may be preempted or not by choosing the prologue
function.

6.8.1    OS_INT_Enter()

Description

Disables nesting.

Prototype

void OS_INT_Enter (void);

Additional information

OS_INT_Enter() has to be used as prologue function, when the interrupt handler should
not be preempted by any other interrupt handler that runs on a priority below the zero
latency interrupt priority. An interrupt handler that starts with OS_INT_Enter() has to end
with the epilogue function OS_INT_Leave().

Example

Interrupt-routine that can not be preempted by other interrupts.

static void _Systick(void) {
  OS_INT_Enter();   // Inform embOS that interrupt code is running
  OS_HandleTick();  // Can not be interrupted by higher priority interrupts
  OS_INT_Leave();   // Inform embOS that interrupt handler is left
}

6.8.2    OS_INT_EnterNestable()

Description

Enables nesting.

Prototype

void OS_INT_EnterNestable (void);

Additional information

OS_INT_EnterNestable(), allow nesting. OS_INT_EnterNestable() may be used as pro-
logue function, when the interrupt handler may be preempted by any other interrupt han-
dler that runs on a higher interrupt priority. An interrupt handler that starts with OS_IN-
T_EnterNestable() has to end with the epilogue function OS_INT_LeaveNestable().

Example

Interrupt-routine that can be preempted by other interrupts.

static void _Systick(void) {
  OS_INT_EnterNestable();  // Inform embOS that interrupt code is running
  OS_HandleTick();         // Can be interrupted by higher priority interrupts
  OS_INT_LeaveNestable();  // Inform embOS that interrupt handler is left
}

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



32 CHAPTER 6 Interrupt handling API

6.9    Interrupt handling API
For the Cortex-M core, which has a built-in vectored interrupt controller, embOS delivers
additional functions to install and setup interrupt handler functions.

This API is not available in embOS library mode OS_LIBMODE_SAFE.

To handle interrupts with the vectored interrupt controller, embOS offers the following
functions:

6.9.1    OS_ARM_ISRInit()

Description

Used to initialize the interrupt handling.

Prototype

void OS_ARM_ISRInit(OS_U32          IsVectorTableInRAM,
                    OS_U32          NumInterrupts,
                    OS_ISR_HANDLER* VectorTableBaseAddr[],
                    OS_ISR_HANDLER* RAMVectorTableBaseAddr[]);

Parameters

Parameter Description

IsVectorTableInRAM
Defines whether a RAM vector table is used.
0: Vector table in Flash.
1: Vector table in RAM.

NumInterrupts Number of implemented interrupts.
VectorTableBaseAddr Flash vector table address.
RAMVectorTableBaseAddr RAM vector table address.

Additional information

This function must be called before OS_ARM_EnableISR(), OS_ARM_InstallISRHandler(),
OS_ARM_DisableISR(), OS_ARM_ISRSetPrio() can be called.

Example

void OS_InitHW(void) {
  OS_ARM_ISRInit(1u, 82, (OS_ISR_HANDLER**)__Vectors, (OS_ISR_HANDLER**)pRAMVectTable);
  OS_ARM_InstallISRHandler(OS_ISR_ID_TICK, OS_Systick);
  OS_ARM_ISRSetPrio(OS_ISR_ID_TICK, 0xE0u);
  OS_ARM_EnableISR(OS_ISR_ID_TICK);
}

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



33 CHAPTER 6 Interrupt handling API

6.9.2    OS_ARM_InstallISRHandler()

Description

Installs an interrupt handler.

Prototype

void OS_ARM_InstallISRHandler(int             ISRIndex,
                              OS_ISR_HANDLER* pISRHandler);

Parameters

Parameter Description

ISRIndex
Index of the interrupt source which should be installed.
Note that the index counts from 0 for the first entry in
the vector table.

pISRHandler Address of the interrupt handler.

Additional information

Sets an interrupt handler in the RAM vector table. Does nothing when the vector table is
in Flash. OS_ARM_InstallISRHandler() copies the vector table from Flash to RAM when it
is called for the first time and RAM vector table is enabled.

Example

void OS_InitHW(void) {
  OS_ARM_ISRInit(1u, 82, (OS_ISR_HANDLER**)__Vectors, (OS_ISR_HANDLER**)pRAMVectTable);
  OS_ARM_InstallISRHandler(OS_ISR_ID_TICK, OS_Systick);
  OS_ARM_ISRSetPrio(OS_ISR_ID_TICK, 0xE0u);
  OS_ARM_EnableISR(OS_ISR_ID_TICK);
}

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



34 CHAPTER 6 Interrupt handling API

6.9.3    OS_ARM_EnableISR()

Description

Used to enable interrupt acceptance of a specific interrupt source in a vectored interrupt
controller.

Prototype

void OS_ARM_EnableISR (int ISRIndex);

Parameters

Parameter Description

ISRIndex
Index of the interrupt source which should be enabled. Note that the
index counts from 0 for the first entry in the vector table.

Additional information

This function just enables the interrupt inside the interrupt controller. It does not enable
the interrupt of any peripherals. This has to be done elsewhere. Note that the ISRIndex
counts from 0 for the first entry in the vector table. The first peripheral index therefore
has the ISRIndex 16, because the first peripheral interrupt vector is located after the 16
generic vectors in the vector table. This differs from index values used with CMSIS.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



35 CHAPTER 6 Interrupt handling API

6.9.4    OS_ARM_DisableISR()

Description

Used to disable interrupt acceptance of a specific interrupt source in a vectored interrupt
controller which is not of the VIC type.

Prototype

void OS_ARM_DisableISR (int ISRIndex);

Parameters

Parameter Description

ISRIndex
Index of the interrupt source which should be disabled. Note that the
index counts from 0 for the first entry in the vector table.

Additional information

This function just disables the interrupt in the interrupt controller. It does not disable the
interrupt of any peripherals. This has to be done elsewhere. Note that the ISRIndex counts
from 0 for the first entry in the vector table. The first peripheral index therefore has the
ISRIndex 16, because the first peripheral interrupt vector is located after the 16 generic
vectors in the vector table. This differs from index values used with CMSIS.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



36 CHAPTER 6 Interrupt handling API

6.9.5    OS_ARM_ISRSetPrio()

Description

Used to set or modify the priority of a specific interrupt source by programming the interrupt
controller.

Prototype

int OS_ARM_ISRSetPrio (int ISRIndex,
                       int Prio);

Parameters

Parameter Description

ISRIndex
Index of the interrupt source which should be modified. Note that the
index counts from 0 for the first entry in the vector table.

Prio
The priority which should be set for the specific interrupt. Prio ranges
from 0 (highest priority) to 255 (lowest priority).

Additional information

This function sets the priority of an interrupt channel by programming the interrupt con-
troller. Please refer to CPU-specific manuals about allowed priority levels. Note that the
ISRIndex counts from 0 for the first entry in the vector table. The first peripheral index
therefore has the ISRIndex 16, because the first peripheral interrupt vector is located after
the 16 generic vectors in the vector table. This differs from index values used with CMSIS.
The priority value is independent of the chip-specific preemption levels. Any value between
0 and 255 can be used, were 255 always is the lowest priority and 0 is the highest priority.
The function can be called to set the priority for all interrupt sources, regardless of whether
embOS is used or not in the specified interrupt handler. Note that interrupt handlers run-
ning on priorities from 127 or higher must not call any embOS function.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



Chapter 7
 
CMSIS

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



38 CHAPTER 7 Introduction

7.1    Introduction
ARM introduced the Cortex Microcontroller Software Interface Standard (CMSIS) as a ven-
dor independent hardware abstraction layer for simplifying software re-use. The standard
enables consistent and simple software interfaces to the processor, for peripherals, for real
time operating systems as embOS and other middleware. As SEGGER is one of the CMSIS
partners, embOS for Cortex-M is fully CMSIS compliant. embOS comes with a generic CMSIS
start project which should run on any Cortex-M3 CPU. All other start projects, even those
not based on CMSIS, are also fully CMSIS compliant and can be used as starting points
for CPU specific CMSIS projects. How to use the generic project and adding vendor specific
files to this or other projects is explained in the following chapters.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



39 CHAPTER 7 The generic CMSIS start project

7.2    The generic CMSIS start project
The folder Start\BoardSupport\CMSIS contains a generic CMSIS start project that should
run on any ARMv7-M core. The subfolder DeviceSupport\ contains the device specific
source and header files which have to be replaced by the device specific files of the vendor
to make the CMSIS sample start project device specific.

7.3    Device specific files needed for embOS with
CMSIS

• Device.h: Contains the device specific exception and interrupt numbers and
names. embOS needs the Cortex-M generic exception numbers PendSV_IRQn and
SysTick_IRQn, as well as the exception names PendSV_Handler and SysTick_Handler,
which are vendor independent and common for all devices. The sample file delivered
with embOS does not contain any peripheral interrupt vector numbers and names as
those are not needed by embOS. To make the embOS CMSIS sample device specific
and allow usage of peripheral interrupts, this file has to be replaced by the one which
is delivered from the CPU vendor.

• System_Device.h: Declares at least the two required system timer functions which are
used to initialize the CPU clock system and one variable which allows the application
software to retrieve information about the current CPU clock speed. The names of the
clock controlling functions and variables are defined by the CMSIS standard and are
therefore identical in all vendor specific implementations.

• System_Device.c: Implements the core specific functions to initialize the CPU, at least
to initialize the core clock. The sample file delivered with embOS contains empty
dummy functions and has to be replaced by the vendor specific file which contains the
initialization functions for the core.

• Startup_Device.s: The startup file which contains the initial reset sequence and
contains exception handler and peripheral interrupt handler for all interrupts. The
handler functions are declared weak, so they can be overwritten by the application which
implements the application specific handler functionality. The sample which comes with
embOS only contains the generic exception vectors and handler and has to be replaced
by the vendor specific startup file.

Startup code requirements:

The reset handler must call the SystemInit() function which is delivered with the core
specific system functions. When using an ARMv7 CPU which may have a VFP floating point
unit equipped, please ensure that the reset handler activates the VFP and VFP support
is selected in the project options. When VFP support is not selected, the VFP should not
be switched on. Otherwise, the SystemInit() function delivered from the device vendor
should also honor the project settings and enable the VFP or keep it disabled according the
project settings. Using CMSIS compliant startup code from the chip vendors may require
modification if it enables the VFP unconditionally.

7.4    Device specific functions/variables needed for
embOS with CMSIS

The embOS system timer is triggered by the Cortex-M generic system timer. The correct
core clock and pll system is device specific and has to be initialized by a low level init function
called from the startup code. embOS calls the CMSIS function SysTick_Config() to set up
the system timer. The function relies on the correct core clock initialization performed by
the low level initialization function SystemInit() and the value of the core clock frequency
which has to be written into the SystemCoreClock variable during initialization or after
calling SystemCoreClockUpdate().
• SystemInit(): The system init function is delivered by the vendor specific CMSIS library

and is normally called from the reset handler in the startup code. The system init

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



40 CHAPTER 7 CMSIS generic functions needed for embOS with
CMSIS

function has to initialize the core clock and has to write the CPU frequency into the
global variable SystemCoreClock.

• SystemCoreClock: Contains the current system core clock frequency and is initialized
by the low level initialization function SystemInit() during startup. embOS for CMSIS
relies on the value in this variable to adjust its own timer and all time related functions.
Any other files or functions delivered with the vendor specific CMSIS library may be
used by the application, but are not required for embOS.

7.5    CMSIS generic functions needed for embOS with
CMSIS

The embOS system timer is triggered by the Cortex-M generic system timer which has
to be initialized to generate periodic interrupts in a specified interval. The configuration
function SysTick_Config() for the system timer relies on correct initialization of the core
clock system which is performed during startup.
• SystemCoreClockUpdate(): This CMSIS function has to update the SystemCoreClock

variable according the current system timer initialization. The function is device specific
and may be called before the SystemCoreClock variable is accessed or any function
which relies on the correct setting of the system core clock variable is called. embOS
calls this function during the hardware initialization function OS_InitHW() before the
system timer is initialized.

• SysTick_Config(): This CMSIS generic function is declared an implemented in the
core_cm*.h file. It initializes and starts the SysTick counter and enables the SysTick
interrupt. For embOS it is recommended to run the SysTick interrupt at the second
lowest preemption priority. Therefore, after calling the SysTick_Config() function
from OS_InitHW(), the priority is set to the second lowest preemption priority ba a
call of NVIC_SetPriority(). The embOS function OS_InitHW() has to be called after
initialization of embOS during main and is implemented in the RTOSInit*.c file.

• SysTick_Handler(): The embOS timer interrupt handler, called periodically by the
interrupt generated from the SysTick timer. The SysTick_Handler is declared weak
in the CMSIS startup code and is replaced by the embOS Systick_Handler function
implemented in RTOSInit*.c which comes with the embOS start project.

• PendSV_Handler(): The embOS scheduler entry function. It is declared weak in the
CMSIS startup code and is replaced by the embOS internal function contained in
the embOS library. The embOS initialization code enables the PendSV exception and
initializes the priority. The application MUST NOT change the PendSV priority.

7.6    Customizing the embOS CMSIS generic start
project

The embOS CMSIS generic start project should run on every ARMv7-M CPU. As the generic
device specific functions delivered with embOS do not initialize the core clock system and
the PLL, the timing is not correct, a real CPU will run very slow. To run the sample project
on a specific CPU, replace all files in the DeviceSupport\ folder by the versions delivered
by the CPU vendor. The vendor and CPU specific files should be found in the CMSIS release
package, or are available from the core vendor. No other changes are necessary on the
start project or any other files.

To run the generic CMSIS start project on an ARMv6-M, you have to replace the embOS
libraries with libraries for ARMv6-M and have to add the specific vendor files.

7.7    Adding CMSIS to other embOS start projects
All CPU specific start projects are fully CMSIS compatible. If required or wanted in the
application, the CMSIS files for the specific CPU may be added to the project without any
modification on existing files. Note that the OS_InitHW() function in the RTOSInit file ini-

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



41 CHAPTER 7 Adding CMSIS to other embOS start projects

tialize the core clock system and pll of the specific CPU. The system clock frequency and
core clock frequency are defined in the RTOSInit file. If the application needs access to
the SystemCoreClock, the core specific CMSIS startup code and core specific initialization
function SystemInit has to be included in the project. In this case, OS_InitHW() function
in RTOSInit may be replaced, or the CMSIS generic RTOSInit_CMSIS.c file may be used
in the project.

7.7.1    Differences between embOS projects and CMSIS
Several embOS start projects are not based on CMSIS but are fully CMSIS compliant and can
be mixed with CMSIS libraries from the device vendors. Switching from embOS to CMSIS,
or mixing embOS with CMSIS functions is possible without problems, but may require some
modification when the interrupt controller setup functions from CMSIS shall be used instead
of the embOS functions.

7.7.1.1    Different peripheral ID numbers
Using CMSIS, the peripheral IDs to setup the interrupt controller start from 0 for the first
peripheral interrupt. With embOS, the first peripheral is addressed with ID number 16.
embOS counts the first entry in the interrupt vector table from 0, so, the first peripheral
interrupt following the 16 Cortex system interrupt entries, is 16. When the embOS functions
should be replaced by the CMSIS functions, this correction has to be taken into account, or
if available, the symbolic peripheral id numbers from the CPU specific CMSIS device header
file may be used with CMSIS. Note that using these IDs with the embOS functions will work
only, when 16 is added to the IDs from the CMSIS device header files.

7.7.1.2    Different interrupt priority values
Using embOS functions, the interrupt priority value ranges from 0 to 255 and is written
into the NVIC control registers as is, regardless of the number of implemented priority bits.
255 is the lowest priority, 0 is the highest priority. Using CMSIS, the range of interrupt
priority levels used to setup the interrupt controller depends on the number of priority bits
implemented in the specific CPU. The number of priority bits for the specific device shall be
defined in the device specific CMSIS header file as __NVIC_PRIO_BITS. If it is not defined
in the device specific header files, a default of 4 is set in the generic CMSIS core header
file. A CPU with 4 priority bits supports up to 16 preemption levels. With CMSIS, the range
of interrupt priorities for this CPU would be 0 to 15, where 0 is the highest priority and
15 is the lowest. To convert an embOS priority value into a value for the CMSIS functions,
the value has to be shifted to the right by (8 - __NVIC_PRIO_BITS). To convert an CMSIS
value for the interrupt priority into the value used with the embOS functions, the value has
to be shifted to the left by (8 - __NVIC_PRIO_BITS). In any case, half of the priorities
with lower values (from zero) are high priorities which must not be used with any interrupt
handler using embOS functions.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



42 CHAPTER 7 Interrupt and exception handling with CMSIS

7.8    Interrupt and exception handling with CMSIS
The embOS CPU specific projects come with CPU specific vector tables and empty exception
and interrupt handlers for the specific CPU. All handlers are named according the names
of the CMSIS device specific handlers and are declared weak and can be replaced by an
implementation in the application source files. The CPU specific vector table and interrupt
handler functions in the embOS start projects can be replaced by the CPU specific CMSIS
startup file of the CPU vendor without any modification on other files in the project. embOS
uses the two Cortex-M generic exceptions PendSV and SysTick and delivers its own handler
functions to handle these exceptions. All peripheral interrupts are device specific and are
not used with embOS except for profiling support and system analysis with embOSView
using a UART.

7.8.1    Enable and disable interrupts
The generic CMSIS functions NVIC_EnableIRQ() and NVIC_DisableIRQ() can be used in-
stead of the embOS functions OS_ARM_EnableISR() and OS_ARM_DisableISR() functions.
Note that the CMSIS functions use different peripheral ID indices to address the specific
interrupt number. embOS counts from 0 for the first entry in the interrupt vector table,
CMSIS counts from 0 for the first peripheral interrupt vector, which is ID number 16 for
the embOS functions. About these differences, please refer to Different peripheral ID num-
bers on page 41. To enable and disable interrupts in general, the embOS functions OS_IN-
T_IncDI() and OS_INT_DecRI() or other embOS functions described in the generic embOS
manual should be used instead of the intrinsic functions from the CMSIS library.

7.8.2    Setting the Interrupt priority
With CMSIS, the CMSIS generic function NVIC_SetPriority() can be used instead of the
OS_ARM_ISRSetPrio() function. Note that with the CMSIS function, the range of valid in-
terrupt priority values depends on the number of priority bits defined and implemented
for the specific device. The number of priority bits for the specific device shall be defined
in the device specific CMSIS header file as __NVIC_PRIO_BITS. If it is not defined in the
device specific header files, a default of 4 is set in the generic CMSIS core header file. A
CPU with 4 priority bits supports up to 16 preemption levels. With CMSIS, the range of
interrupt priorities for this CPU would be 0 to 15, where 0 is the highest priority and 15 is
the lowest. About interrupt priorities in an embOS project, please refer to Interrupt priori-
ties on page 29 and Interrupt nesting on page 31, about the differences between interrupt
priority and ID values used to setup the NVIC controller, please refer to Different interrupt
priority values on page 41.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



Chapter 8
 
VFP support

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



44 CHAPTER 8 Vector Floating Point support

8.1    Vector Floating Point support
Some Cortex-M4, Cortex-M7 and Cortex-M33 MCUs come with an integrated vectored float-
ing point unit.

When selecting the CPU and activating the VFP support in the project options, the compiler
and linker will add efficient code which uses the VFP when floating point operations are used
in the application. With embOS, the VFP registers are automatically saved and restored
when preemptive or cooperative task switches are performed. For efficiency reasons, em-
bOS does not save and restore the VFP registers for tasks which do not use the VFP unit.

8.1.1    Using embOS libraries with VFP support
When VFP support is selected as project option, one of the embOS libraries with VFP support
have to be used in the project. The embOS libraries for VFP support require that the VFP
is switched on during startup and remains switched on during program execution. Using
your own startup code, ensure that the VFP is switched on during startup. When the VFP
unit is not switched on, the embOS scheduler will fail. The debug version of embOS checks
whether the VFP is switched on when embOS is initialized by calling OS_Init(). When the
VFP unit is not detected or not switched on, the embOS error handler OS_Error() is called
with error code OS_ERR_CPU_STATE_ILLEGAL.

8.1.2    Using the VFP in interrupt service routines
Using the VFP in interrupt service routines does not require any additional functions to save
and restore the VFP registers. The VFP registers are automatically saved and restored by
the hardware.

8.1.3    GCC VFP Compiler options
The GCC compiler uses the compiler option -mfloat-abi=name to specify which float-
ing-point ABI to use. Permissible values are soft, softfp, and hard.

Specifying soft causes GCC to generate output containing library calls for floating-point
operations.
softfp allows the generation of code using hardware floating-point instructions, but still
uses the soft-float calling conventions.
hard allows generation of floating-point instructions and uses FPU-specific calling conven-
tions.

With embOS object code, please ensure the library in use matches the configured ABI for
your project.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



Chapter 9
 
RTT and SystemView

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



46 CHAPTER 9 SEGGER Real Time Transfer

9.1    SEGGER Real Time Transfer
SEGGER’s Real Time Transfer (RTT) is the new technology for interactive user I/O in em-
bedded applications. RTT can be used with any J-Link model and any supported target
processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default configured
to use RTT for debug output. Some IDEs, such as SEGGER Embedded Studio, support RTT
and display RTT output directly within the IDE. In case the used IDE does not support RTT,
SEGGER’s J-Link RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead
to visualize your application?s debug output.

For more information on SEGGER Real Time Transfer, refer to segger.com/jlink-rtt.

9.1.1    Shipped files related to SEGGER RTT
All files related to SEGGER RTT are shipped inside the respective start project’s Setup folder:

File Description

SEGGER_RTT.c Generic implementation of SEGGER RTT.
SEGGER_RTT.html Generic implementation header file.
SEGGER_RTT_Conf.h Generic RTT configuration file.

SEGGER_RTT_printf.c
Generic printf() replacement to write formatted data via
RTT.

SEGGER_RTT_Syscalls_*.c

Compiler-specific low-level functions for using printf() via
RTT. If this file is included in a project, RTT is used for
debug output. To use the standard out of your IDE, ex-
clude this file from build.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-rtt


47 CHAPTER 9 SEGGER SystemView

9.2    SEGGER SystemView
SEGGER SystemView is a real-time recording and visualization tool to gain a deep under-
standing of the runtime behavior of an application, going far beyond what debuggers are
offering. The SystemView module collects and formats the monitor data and passes it to
RTT.

SystemView is included with many embOS start projects. These projects are by default
configured to use SystemView in debug builds. The associated PC visualization application,
SystemViewer, is not shipped with embOS. Instead, the most recent version of that appli-
cation is available for download from our website.

For more information on SEGGER SystemView, including the SystemViewer download, refer
to segger.com/systemview.

9.2.1    Shipped files related to SEGGER SystemView
All files related to SEGGER SystemView are shipped inside the respective start project’s
Setup folder:

File Description

Global.h
Global type definitios required by SEGGER Sys-
temView.

SEGGER.h Generic types and utility function header.
SEGGER_SYSVIEW.c Generic implementation of SEGGER RTT.
SEGGER_SYSVIEW.h Generic implementation include file.
SEGGER_SYSVIEW_Conf.h Generic configuration file.
SEGGER_SYSVIEW_ConfDefaults.h Generic default configuration file.

SEGGER_SYSVIEW_Config_embOS.c
Target-specific configuration of SystemView
with embOS.

SEGGER_SYSVIEW_embOS.c
Generic interface implementation for Sys-
temView with embOS.

SEGGER_SYSVIEW_embOS.h
Generic interface implementation header file
for SystemView with embOS.

SEGGER_SYSVIEW_Int.h Generic internal header file.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH

https://www.segger.com/systemview


Chapter 10
 
embOS Thread Script

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



49 CHAPTER 10 Introduction

10.1    Introduction
A thread script is included with every board support package shipped with embOS. This
script may be used to display various information about the system, the tasks and created
embOS objects like timers, mailboxes, queues, semaphores, memory pools, events and
watchdogs.

When creating a custom project, the thread script may be added to the respective project’s
options (“Debug” -> “Debugger” -> “Threads Script File”).

10.2    How to use it
To enable the threads window, click on View in the menu bar and choose the option Threads
in the sub-menu More Debug Windows. Alternatively, the threads window may also be
enabled by pressing [Ctrl + Alt + H]. The object lists and system information within
the threads window can be enabled or disabled via the Show Lists dropdown menu. The
threads window gets updated every time the application is halted. It should closely resemble
the screenshot below:

Some of this information is available in debug builds of embOS only. Using other builds,
the respective entries will show “n.a.” to indicate this.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



50 CHAPTER 10 How to use it

10.2.1    Task List

The task list displays various information about the running tasks:

Column Description

Priority This is the priority of the task
Id The address of a tasks task control block
Name The name of the task
Status The current status of the task
Timeout Time in ms till the task gets called again

Stack Info Shows the maximum usage (left) of the total stack for this task
(right) in Bytes

Run Count Shows how many times the task has been started since the last
reset

Time Slice Show the number of remaining and maximum time slices if round
robin scheduling is available

Task Events Show the event mask of a task

Note

By default the thread script is limited to display a total of 25 tasks only. This limit
may be changed inside the respective project’s options (“Debug” -> “Debugger” -
> “Thread Maximum”).

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



51 CHAPTER 10 How to use it

10.2.2    Task sensitivity
In addition to the information displayed in the threads list, the threads script furthermore
allows for the investigation of the register contents and the call stack of inactive tasks. To
display this information, double click the entry of the respective task in the threads window.
The register window and the call stack window will subsequently be updated to display
information about the chosen task’s state. To view this information, the call stack and the
register window have to be enabled.

After double clicking the inactive task, the call stack window shows the last function that
has been called by this task:

Also, the register window gets updated and shows the register contents of the inactive task:

10.2.3    Timers

The timers list displays various information about active timers:

Column Description

Id(Timers) The timer’s address
Name If available, the respective object identifier is shown here
Hook The function address that is called after the timeout

Timeout The time delay and the point in time, when the timer finishes
waiting

Period The time period the timer runs

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



52 CHAPTER 10 How to use it

10.2.4    Mailboxes

The mailboxes list displays various information about used mailboxes:

Column Description

Id(Mailboxes) The mailbox’s address
Name If available, the respective object identifier is shown here

Messages The number of messages in a mailbox and the maximum number
of messages the mailbox can hold

Message Size The size of an individual message in bytes
Buffer Address The message buffer address

Waiting Tasks The list of tasks that are waiting for the mailbox (address and, if
available, name)

10.2.5    Queues

The queues list displays various information about used queues:

Column Description

Id(Queues) The queue’s address
Name If available, the respective object identifier is shown here
Messages The number of messages in a queue
Buffer Address The message buffer address
Buffer Size The size of the message buffer in bytes

Waiting Tasks The list of tasks that are waiting for the queue (address and, if
available, name)

10.2.6    Mutexes

The mutexes list displays various information about used mutexes:

Column Description

Id(Mutexes) The mutexes’ address
Name If available, the respective object identifier is shown here
Owner The address and name of the owner task
Use Counter Counts the number of times the mutex was claimed

Waiting Tasks The list of tasks that are waiting for the mutex (address and, if
available, name)

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



53 CHAPTER 10 How to use it

10.2.7    Semaphores

The semaphores list displays various information about used semaphores:

Column Description

Id(Semaphores) The semaphores’ address
Name If available, the respective object identifier is shown here
Count Counts how often this semaphore can be claimed

Waiting Tasks The list of tasks that are waiting for the semaphore (address and,
if available, name)

10.2.8    Memory Pools

The memory pools list displays various information about used memory pools:

Column Description

Id(Memory Pools) The memory pool’s address
Name If available, the respective object identifier is shown here
Total Blocks Shows the available blocks and the maximal number of blocks
Block Size Shows the size of a single memory block

Max. Usage Shows the maximal count of blocks which were simultaneously
allocated

Buffer Address The address of the memory pool buffer

Waiting Tasks The list of tasks that are waiting for free memory blocks (address
and, if available, name)

10.2.9    Event Objects

The event objects list displays various information about used event objects:

Column Description

Id(Event Objects) The event object’s address
Name If available, the respective object identifier is shown here

Signaled The hexadecimal value of the bit mask containing the signaled
event bits

Reset Mode The event object’s reset mode

Mask Mode The current mask mode indicating whether OR or AND logic is
used to check if a task shall resume

Waiting Tasks The list of tasks that are waiting for the event object (address
and, if available, name)

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



54 CHAPTER 10 How to use it

10.2.10    Watchdogs

The watchdogs list displays various information about used watchdogs:

Column Description

Id(Watchdogs) The watchdog’s address
Name If available, the respective object identifier is shown here

Timeout The remaining time (and the system time in parentheses) until
the watchdog has to be fed

Period The period in which the watchdog has to be fed

10.2.11    System Information
The system information list displays various information about embOS.

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



Chapter 11
 
Technical data

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH



56 CHAPTER 11 Memory requirements

11.1    Memory requirements
This chapter lists technical data of embOS used with Cortex-M CPUs. These values are
neither precise nor guaranteed, but they give you a good idea of the memory requirements.
They vary depending on the current version of embOS. The minimum ROM requirement for
the kernel itself is about 1.700 bytes.

In the table below, which is for X-Release build, you can find minimum RAM size require-
ments for embOS resources. Note that the sizes depend on selected embOS library mode.

embOS resource RAM [bytes]

Task control block 36
Software timer 20
Mutex 16
Semaphore 8
Mailbox 24
Queue 32
Task event 0
Event object 12

embOS for Cortex-M and Embedded Studio © 2010-2021 SEGGER Microcontroller GmbH


	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	Standard system libraries
	Thread-Local Storage TLS
	OS_TASK_SetContextExtensionTLS()

	ARMv8-M Stack limit register PSPLIM
	OS_PSPLIM_SetTaskContextExtension()

	ARM erratum 837070

	Stacks
	Task stack for Cortex-M
	System stack for Cortex-M
	Interrupt stack for Cortex-M

	Interrupts
	Cortex-M interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt vector table
	Required embOS system interrupt handler

	Interrupt-stack switching
	Zero latency interrupts
	Interrupt priorities
	Interrupt priorities with Cortex-M cores
	Priority of the embOS scheduler
	Priority of the embOS system timer
	Priority of embOS software timers
	Priority of application interrupts for Cortex-M cores

	Interrupt nesting
	OS_INT_Enter()
	OS_INT_EnterNestable()

	Interrupt handling API
	OS_ARM_ISRInit()
	OS_ARM_InstallISRHandler()
	OS_ARM_EnableISR()
	OS_ARM_DisableISR()
	OS_ARM_ISRSetPrio()


	CMSIS
	Introduction
	The generic CMSIS start project
	Device specific files needed for embOS with CMSIS
	Device specific functions/variables needed for embOS with CMSIS
	CMSIS generic functions needed for embOS with CMSIS
	Customizing the embOS CMSIS generic start project
	Adding CMSIS to other embOS start projects
	Differences between embOS projects and CMSIS
	Different peripheral ID numbers
	Different interrupt priority values


	Interrupt and exception handling with CMSIS
	Enable and disable interrupts
	Setting the Interrupt priority


	VFP support
	Vector Floating Point support
	Using embOS libraries with VFP support
	Using the VFP in interrupt service routines
	GCC VFP Compiler options


	RTT and SystemView
	SEGGER Real Time Transfer
	Shipped files related to SEGGER RTT

	SEGGER SystemView
	Shipped files related to SEGGER SystemView


	embOS Thread Script
	Introduction
	How to use it
	Task List
	Task sensitivity
	Timers
	Mailboxes
	Queues
	Mutexes
	Semaphores
	Memory Pools
	Event Objects
	Watchdogs
	System Information


	Technical data
	Memory requirements


